Itzhak Bars
Professor
University of Southern California, Los Angeles
USA
Biography
Itzhak Bars is a Professor of Physics at the University of Southern California, Los Angeles. He received his Ph.D. from Yale University in 1971 and after postdoctoral research at the University of California at Berkeley, he joined the faculty of Stanford University in 1973. He returned to Yale University in 1975 as a faculty member in the Physics Department, and after a decade, he moved to the University of Southern California in 1984 to build a research group in High Energy Physics. He served as the director of the Caltech-USC Center for Theoretical Physics during 1999-2003. His visiting appointments include Harvard University, the Institute for Advanced Study in Princeton, CERN and The Perimeter Institute for Theoretical Physics where he is currently a Distinguished Visiting Research Chair. Professor Bars is a leading expert in symmetries in Physics, which he applies in much of his research on particle physics, field theory, string theory and mathematical physics in over 240 scientific papers. He is the author of a book on "Quantum Mechanics", a co-author of a book on "Extra Dimensions in Space and Time", and co-editor of the books "Strings '95", "Future Perspectives in String Theory", "Symmetry in Particle Physics". Some of his experimentally successful physics predictions include supersymmetry in large nuclei with even/odd numbers of nucleons, and the weak interaction contribution to the anomalous magnetic moment of the muon, in the context of the quantized Standard Model, that was confirmed after 30 years. His contributions to the mathematics of supersymmetry are extensively used in several branches of physics and mathematics. Bars's honors include Fellow of the American Physical Society, the First Award in the Gravity Research Foundation essay contest (shared with Chris Pope), Outstanding Junior Investigator Award by the Department of Energy, and the A. P. Sloan Foundation Fellowship.
Research Interest
His current interests include String Field Theory; Two-Time Physics, which he originated in 1998; Cosmology and Black Holes. In 2006 he established that all the physics we know today, as embodied in principle in the Standard Model of Particles and Forces and General Relativity, emerges from a new kind of gauge symmetric theory (in position-momentum phase space) based on a space-time of 4 space and 2 time dimensions. The physical gauge invariant sector, of this 4+2 dimensional reformulation of all physics, yields a holographic projection (like a shadow) onto a "boundary" of 4+2 dimensions. This boundary is an emergent space-time with 3 space and 1 time dimensions where we exist as observers that interpret all phenomena that occur within the 4+2 dimensional universe. This reformulation of physics predicts new correlations among physical phenomena that are not provided by the traditional 1 time formalism and therefore yields new information that was not available before. An important prediction of this approach is that the Standard Model coupled to General Relativity must be invariant under local scaling transformations in 3+1 dimensions. This local Weyl symmetry in turn provides new tools to investigate new features of 3+1 dimensional space-time in the very early cosmological history of the universe and in the interior of black holes.